- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bandala, Erick (2)
-
Chen, Jihua (2)
-
Coulter, Ryan (2)
-
Do, Changwoo (2)
-
Hensley, Dale_K (2)
-
Hua, Weijian (2)
-
Jin, Yifei (2)
-
Mitchell, Kellen (2)
-
Raymond, Lily (2)
-
Zhang, Cheng (2)
-
Zhao, Danyang (2)
-
Chai, Guangrui (1)
-
Cui, Haoran (1)
-
Gaharwar, Akhilesh_K (1)
-
Liao, Yiliang (1)
-
Rubbi, Fazlay (1)
-
Wang, Yan (1)
-
Zhang, Zhengyi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Nanocomposites made from alginate and nanoclay are extensively applied for diverse biomedical applications. However, the lack of a clear understanding of the interactions between alginate and nanoclay makes it difficult to rationally design the nanocomposites for different material extrusion‐based 3D bioprinting strategies. Here, a combined analytical model is proposed to accurately predict the interaction mechanisms between alginate and nanoclay through small‐angle neutron scattering. These mechanisms are summarized into a phase diagram that can guide the design of alginate‐nanoclay nanocomposites for different bioprinting applications. The rheological properties of various nanocomposites are measured to validate the proposed interaction mechanisms at the macroscale. Accordingly, three representative extrusion‐based bioprinting strategies are linked with the nanocomposite design and applied to freeform fabricate complex structures. A roadmap is summarized to bridge the gap between biomaterial design and bioprinting processes, enabling the rapid and rational selection of biomaterial formula based on available 3D printing methods, and vice versa.more » « less
-
Hua, Weijian; Zhang, Cheng; Cui, Haoran; Mitchell, Kellen; Hensley, Dale_K; Chen, Jihua; Do, Changwoo; Raymond, Lily; Coulter, Ryan; Bandala, Erick; et al (, Advanced Science)Abstract Embedded ink writing (EIW) is an emerging 3D printing technique that fabricates complex 3D structures from various biomaterial inks but is limited to a printing speed of ∼10 mm s−1due to suboptimal rheological properties of particulate‐dominated yield‐stress fluids when used as liquid baths. In this work, a particle‐hydrogel interactive system to design advanced baths with enhanced yield stress and extended thixotropic response time for realizing high‐speed EIW is developed. In this system, the interactions between particle additive and three representative polymeric hydrogels enable the resulting nanocomposites to demonstrate different rheological behaviors. Accordingly, the interaction models for the nanocomposites are established, which are subsequently validated by macroscale rheological measurements and advanced microstructure characterization techniques. Filament formation mechanisms in the particle‐hydrogel interactive baths are comprehensively investigated at high printing speeds. To demonstrate the effectiveness of the proposed high‐speed EIW method, an anatomic‐size human kidney construct is successfully printed at 110 mm s−1, which only takes ∼4 h. This work breaks the printing speed barrier in current EIW and propels the maximum printing speed by at least 10 times, providing an efficient and promising solution for organ reconstruction in the future.more » « less
An official website of the United States government
